If $\sqrt{x} = \sqrt{3} - \sqrt{5}$, then the value of $x^2 - 16 x+ 6$ is : |
0 4 2 -2 |
2 |
$\sqrt{x} = \sqrt{3} - \sqrt{5}$ Squaring both sides ($\sqrt{x}$)2 = ($ \sqrt{3} - \sqrt{5}$)2 = x = 3 + 5 – 2√15 = x – 8 = -2√15 Again, squaring both sides (x – 8)2 = (-2√15)2 = x2 + 64 – 16x = 4 × 15 = x2 + 4 – 16x = 0 = x2 – 16x + 6 = 2 |