The value of $\int\limits_{-\pi}^{\pi}\frac{cos^2x}{1+a^x}dx$, a > 0, is |
$\pi$ $a\pi$ $\pi/2$ $2\pi$ |
$\pi/2$ |
Let $I=\int\limits_{-\pi}^{\pi}\frac{cos^2x}{1+a^x}dx=\int\limits_{-\pi}^{\pi}\frac{cos^2t}{1+a^{-t}}dt$ (x = -t) $=\int\limits_{-\pi}^{\pi}\frac{cos^2t\,a^t}{1+a^t}dx=\int\limits_{-\pi}^{\pi}\frac{cos^2x\,a^x}{1+a^x}dx$ $⇒2I=\int\limits_{-\pi}^{\pi}cos^2x\,dx=2\int\limits_{0}^{\pi}cos^2x\,dx=4\int\limits_{-0}^{\pi/2}\frac{1+cos2x}{2}dx=\pi$ $⇒I=\frac{\pi}{2}$ Hence (C) is the correct answer. |