If $tan^{-1}2x+tan^{-1}3x=\frac{\pi}{4},$ then value of x is : |
1 $\frac{1}{4}$ -1 $\frac{1}{6}$ |
$\frac{1}{6}$ |
The correct answer is Option (4) → $\frac{1}{6}$ $\tan^{-1}2x+\tan^{-1}3x=\frac{\pi}{4}$ $⇒\tan^{-1}\frac{2x+3x}{1-6x^2}=\frac{\pi}{4}$ so $\frac{5x}{1-6x^2}⇒5x=1-6x^2$ $6x^2+5x-1=0$ $6x^2+6x-x-1=0$ $6x(x+1)-(x+1)=0$ $x=\frac{1}{6}$ as $x=-1$ doesn't satisfy original equation |