If $5 \cos ^2 \theta+1=3 \sin ^2 \theta, 0^{\circ}<\theta<90^{\circ}$, then what is the value of $\frac{\tan \theta+\sec \theta}{\cot \theta+{cosec} \theta}$. |
$\frac{3+2 \sqrt{3}}{2}$ $\frac{2+3 \sqrt{3}}{3}$ $\frac{2+3 \sqrt{3}}{2}$ $\frac{3+2 \sqrt{3}}{3}$ |
$\frac{3+2 \sqrt{3}}{3}$ |
5 cos²θ + 1 = 3 sin²θ { sin²θ + cos²θ = 1 } 5(1 - sin²θ) + 1 = 3 sin²θ 5 - 5sin²θ) + 1 = 3 sin²θ 8sin²θ = 6 sinθ = \(\frac{√3}{2}\) { we know, sin60º = \(\frac{√3}{2}\) } So, θ = 60º Now, \(\frac{ tanθ + secθ }{cotθ + cosecθ}\) = \(\frac{ tan 60º + sec 60º }{cot 60º + cosec 60º}\) = \(\frac{ √3 + 2 }{1/√3 + 2/√3}\) = \(\frac{ 3 + 2√3 }{3}\) |