Two identical short magnetic dipoles of magnetic moment $2\, Am^2$ are placed with their axis mutually perpendicular and centers 2 m apart. The magnitude of the resultant magnetic field at the midpoint (O) between the dipoles is: --------------- |
$2\sqrt{5} × 10^{-7}T$ $4\sqrt{5} × 10^{-7}T$ $2\sqrt{5} × 10^{-6}T$ $4\sqrt{5} × 10^{-6}T$ |
$2\sqrt{5} × 10^{-7}T$ |
The correct answer is Option (1) → $2\sqrt{5} × 10^{-7}T$ Magnetic moment of each dipole: $M = 2 \, Am^2$ Distance of midpoint from each dipole: $r = 1 \, m$ Magnetic field on axial line of dipole: $B_{axial} = \frac{\mu_0}{4 \pi} \cdot \frac{2M}{r^3}$ $B_{axial} = \frac{10^{-7} \cdot 2 \cdot 2}{1^3} = 4 \times 10^{-7} \, T$ Magnetic field on equatorial line of dipole: $B_{eq} = \frac{\mu_0}{4 \pi} \cdot \frac{M}{r^3}$ $B_{eq} = \frac{10^{-7} \cdot 2}{1^3} = 2 \times 10^{-7} \, T$ Since the two dipoles are perpendicular, the fields are perpendicular at midpoint. Resultant field: $B = \sqrt{B_{axial}^2 + B_{eq}^2}$ $B = \sqrt{(4 \times 10^{-7})^2 + (2 \times 10^{-7})^2}$ $B = \sqrt{16 + 4} \times 10^{-14}$ $B = \sqrt{20} \times 10^{-7}$ $B = 2\sqrt{5} \times 10^{-7} \, T$ Correct Answer: $2\sqrt{5} \times 10^{-7} \, T$ |