The differential equation $\frac{d y}{d x}+\frac{y^2}{x^2}=\frac{y}{x}$ has the solution |
$x=y(\log x+C)$ $y=x(\log y+C)$ $x=(y+C) \log x$ $y=(x+C) \log y$ |
$x=y(\log x+C)$ |
We have, $\frac{d y}{d x}+\frac{y^2}{x^2}=\frac{y}{x}$ Putting $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$, we get $v+x \frac{d v}{d x}+v^2=v \Rightarrow x \frac{d v}{d x}=-v^2 \Rightarrow-\frac{1}{v^2} d v=\frac{1}{x} d x$ On integrating, we get $\frac{1}{v}=\log x+C \Rightarrow x=y(\log x+C)$ |