The points on the curve $\frac{x^2}{16}+\frac{y^2}{25}=1$ at which tangents are parallel to x-axis are : |
$( \pm 5,0)$ $( \pm 4,0)$ $(0, \pm 5)$ $(0, \pm 4)$ |
$(0, \pm 5)$ |
$\frac{x^2}{16}+\frac{y^2}{25}=1$ .......(1) Differentiating (1) w.r.t x $\frac{2 x}{16}+\frac{2 y}{25} \frac{d y}{d x}=0$ as tangent is parallel to x-axis $\frac{dy}{dx} = 0$ so $\frac{2 x}{16}+0=0$ $\Rightarrow x=0$ from (1) putting x= 0 we get $\frac{y^2}{25}=1 \Rightarrow y^2 = 25$ So $y= \pm 5$ at points (0, ±5) tangents are parallel to x-axis. |