One sample t-test, for testing population mean to a specified value $(\mu_0)$ is given by : |
$t=\frac{\overline{x}-\mu_0}{S/n}$ $t=\frac{\overline{x}-\mu_0}{S/\sqrt{n}}$ $t=\frac{\overline{x}-\mu_0}{S/n^2}$ $t=\frac{\overline{x}-\mu_0}{\sqrt{S}/n}$ |
$t=\frac{\overline{x}-\mu_0}{S/\sqrt{n}}$ |
The correct answer is Option (2) → $t=\frac{\overline{x}-\mu_0}{S/\sqrt{n}}$ The test statistic for the one-sample, $t=\frac{\overline{x}-\mu_0}{S/\sqrt{n}}$ where, $\bar x$ = Sample mean $\mu_0$ = Specified population mean $s$ = Sample standard deviation $n$ = Sample size |