If $y=\left(x+\sqrt{x^2+1}\right)^m$, then $\frac{dy}{dx}$ is |
$\frac{y}{\sqrt{x^2+1}}$ $\frac{m^2y}{\sqrt{x^2+1}}$ $\frac{m}{\sqrt{x^2+1}}$ $\frac{my}{\sqrt{x^2+1}}$ |
$\frac{my}{\sqrt{x^2+1}}$ |
The correct answer is Option (4) → $\frac{my}{\sqrt{x^2+1}}$ Given: $y = \left(x + \sqrt{x^2 + 1} \right)^m$ Step 1: Let $u = x + \sqrt{x^2 + 1}$ Then, $y = u^m$ Step 2: Differentiate using the chain rule: $\frac{dy}{dx} = m u^{m-1} \cdot \frac{du}{dx}$ Step 3: Compute $\frac{du}{dx}$ $\frac{du}{dx} = \frac{d}{dx}\left(x + \sqrt{x^2 + 1}\right) = 1 + \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x = 1 + \frac{x}{\sqrt{x^2 + 1}}$ Step 4: Final Answer $\frac{dy}{dx} = m \left(x + \sqrt{x^2 + 1} \right)^{m-1} \left(1 + \frac{x}{\sqrt{x^2 + 1}} \right)$ |