If the system of equations |
2 4 5 11 |
11 |
The correct answer is Option (4) → 11 The given system of equations is: $x - 3y + 5z = 3$ $x - 2y + 4z = 4$ $2x - 7y + \lambda z = 5$ This can be written in matrix form as: $A \cdot X = B$ Where $A = \begin{bmatrix} 1 & -3 & 5 \\ 1 & -2 & 4 \\ 2 & -7 & \lambda \end{bmatrix}$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ For the system to have infinite solutions, the coefficient matrix $A$ must be singular, i.e., $|A| = 0$ Compute the determinant of $A$: $|A| = \begin{vmatrix} 1 & -3 & 5 \\ 1 & -2 & 4 \\ 2 & -7 & \lambda \end{vmatrix}$ Expand along the first row: $= 1 \cdot \begin{vmatrix} -2 & 4 \\ -7 & \lambda \end{vmatrix} - (-3) \cdot \begin{vmatrix} 1 & 4 \\ 2 & \lambda \end{vmatrix} + 5 \cdot \begin{vmatrix} 1 & -2 \\ 2 & -7 \end{vmatrix}$ $= 1 \cdot (-2 \cdot \lambda - (-7 \cdot 4)) + 3 \cdot (1 \cdot \lambda - 2 \cdot 4) + 5 \cdot (1 \cdot -7 - 2 \cdot -2)$ $= 1 \cdot (-2\lambda + 28) + 3 \cdot (\lambda - 8) + 5 \cdot (-7 + 4)$ $= -2\lambda + 28 + 3\lambda - 24 - 15$ $= \lambda - 11$ Set determinant to zero for infinite solutions: $\lambda - 11 = 0$ $\lambda = 11$ |