Corners points of the feasible region for an LPP, are (0, 2), (3, 0), (6,0) and (6, 8). If $z= 2x+3y$ is the objective function of LPP then max. (z) - min.(z) is equal to : |
30 24 21 9 |
30 |
The correct answer is Option (1) → 30 $Z_{(0,2)}=2×0+3×2=6$ $Z_{(3,0)}=2×3+3×0=6$ $Z_{(6,0)}=2×6+3×0=12$ $Z_{(6,3)}=2×6+3×8=36$ $∴Z_{max}-Z_{min}=36-6=30$ |