Consider the following data :
The equation of the straight line trend by the method of least squares is , |
$y=63+5.6x$ $y=74+4.5x$ $y=75.3+2.5x$ $y=95+6.5x$ |
$y=74+4.5x$ |
The correct answer is Option (2) → $y=74+4.5x$ The equation of the straight line trend is, $y=a+bx$ $∑x=(-2)+(-1)+0+1+2=0$ $∑y=60+75+80+70+85=370$ $∑xy=(-2)(60)+(-1)(75)+(0)(80)+(1)(70)+(2)(85)=45$ $∑x^2=(-2)^2+(-1)^2+0^2+1^2+2^2=10$ $a=\frac{∑y}{n}=\frac{370}{5}=74$ $b=\frac{∑xy}{∑x^2}=\frac{45}{10}=4.5$ $⇒y=74+4.5x$ |