If $\cos y=x \cos (\mathrm{a}+y)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ |
$\frac{\cos ^2(a+y)}{\sin a}$ $\frac{\sin ^2(a+y)}{\sin a}$ $\frac{\cos ^2(a+y)}{\cos a}$ $\frac{\sin ^2(a+y)}{\cos a}$ |
$\frac{\cos ^2(a+y)}{\sin a}$ |
The correct answer is Option (1) - $\frac{\cos ^2(a+y)}{\sin a}$ $\cos y=x \cos (a+y)$ so $x=\frac{\cos y}{\cos (a+y)}⇒\frac{dx}{dy}=\frac{\sin y\cos(a+y)-\cos y\sin(a+y)}{\cos^2 (a+y)}$ so $\frac{dx}{dy}=\frac{\sin a}{\cos^2 (a+y)}⇒\frac{dy}{dx}=\frac{\cos^2(a+y)}{\sin a}$ |