Let a solution $y=y(x)$ of the differential equation $\frac{d y}{d x} \cos x+y \sin x=1$ satisfy $y(0)=1$. Statement-1: $y(x)=\sqrt{2}\sin \left(\frac{\pi}{4}+x\right)$ Statement-2: The integrating factor of the given differential equation is $\sec x$. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. |
We have, $\frac{d y}{d x} \cos x+y \sin x=1$ $\Rightarrow \frac{d y}{d x}+y \tan x=\sec x$ $I.F.=e^{\int\tan xdx}=e^{\log|\sec x|}$ $=\sec x$ $∴y\sec x=\int\sec^2xdx$ $⇒y\sec x=\tan x+c$ $⇒y=\frac{\tan x+c}{\sec x}$ $⇒y=\sin x+c\cos x$ and, $y(0)=1$ $⇒\sin 0+c(\cos 0)=1$ $⇒c=1$ $∴y=\sin x+\cos x$ $=\sqrt{2}\sin\left(\frac{\pi}{4}+x\right)=\sqrt{2}×\frac{1}{\sqrt{2}}\sin x+\sqrt{2}×\frac{1}{\sqrt{2}}\cos x$ |