An electron beam passes through a region of magnetic field of $2×10^{-3} T$ and an electric field of $3.2×10^4 V m^{-1}$, both acting perpendicular to each other. If the path of the electron remains undeviated calculate the speed of electron: [Mass of electron = $9.1×10^{-31} kg$] |
$0.8×10^6 m/s$ $0.8×10^7 m/s$ $1.6×10^6 m/s$ $1.6×10^7 m/s$ |
$1.6×10^7 m/s$ |
The correct answer is Option (4) → $1.6×10^7 m/s$ Electric force on electron, $F_E=eE$ Magnetic force on electron, $F_M=evB$ and, $F_E=F_M$ [Given] $⇒V=\frac{E}{B}=\frac{3.2×10^4V/m}{2×10^{-3}T}$ $⇒V=1.6×10^7m/s$ |