The value of k for which the following system of equations does not possess a unique solution is: $k x+3 y-z=1$ $x+2 y+z=2$ $-k x+y+2 z=-1$ |
$-\frac{7}{2}$ $\frac{7}{2}$ 7 -7 |
$-\frac{7}{2}$ |
The correct answer is Option (1) → $-\frac{7}{2}$ The given system of equations, $k x+3 y-z=1$ $x+2 y+z=2$ $-k x+y+2 z=-1$ Coefficient Matrix, $A=\begin{bmatrix}k&33&-1\\1&2&1\\-k&1&2\end{bmatrix}$ To ensure system doesn't have a solution, $|A|=0$ $∴\begin{bmatrix}k&33&-1\\1&2&1\\-k&1&2\end{bmatrix}=0$ $⇒3k-3(k+2)-(1+2k)=0$ $⇒-7-2k=0$ $⇒k=-\frac{7}{2}$ |