If a matrix $A =\begin{bmatrix}5&-8\\-3&5\end{bmatrix}$ then which of the following is/are TRUE? (A) $|A| = 1$ Choose the correct answer from the options given below: |
(A) only (A) and (C) only (A), (B) and (C) only (A), (B), (C) and (D) only |
(A) only |
The correct answer is Option (1) → (A) only $|A|=5\cdot5-(-8)(-3)=25-24=1$ $A$ is not singular (determinant $\neq 0$) $-2A=\begin{pmatrix}-10 & 16\\ 6 & -10\end{pmatrix}\neq\begin{pmatrix}10 & -16\\ -6 & 10\end{pmatrix}$ $AI=A\neq\begin{pmatrix}5 & 0\\ 0 & 5\end{pmatrix}$ Only (A) is true. |