Let A and B be two events such that $P(A) = 0.2, P(B) = 0.4, P(B|A) = 0.5$
Choose the correct answer from the options given below: |
(A)-(IV), (B)-(III), (C)-(I), (D)-(II) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) (A)-(I), (B)-(II), (C)-(IV), (D)-(III) (A)-(II), (B)-(IV), (C)-(III), (D)-(I) |
(A)-(IV), (B)-(III), (C)-(I), (D)-(II) |
The correct answer is Option (1) → (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
Given: $P(A) = 0.2$, $P(B) = 0.4$, $P(B|A) = 0.5$ (A) $P(A \cap B) = P(A) \cdot P(B|A) = 0.2 \cdot 0.5 = 0.1$ ⇒ Match with (IV) (B) $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.1}{0.4} = 0.25$ ⇒ Match with (III) (C) $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.2 + 0.4 - 0.1 = 0.5$ ⇒ Match with (I) (D) $P(A') = 1 - P(A) = 1 - 0.2 = 0.8$ ⇒ Match with (II) |