If \( A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} \) and \( 2A^{-1} = KI - A \), where \( K \) is a real number and \( I \) is the identity matrix of order 2, then the value of \( K \) is: |
5 -3 -6 9 |
9 |
The correct answer is Option (4) → 9 $A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$ Given: $2A^{-1} = K I - A$ Multiply both sides by $A$: $2I = K A - A^2$ $\Rightarrow A^2 - K A + 2I = 0$ Compute $A^2$: $A^2 = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} = \begin{bmatrix} 2\cdot2 + (-3)\cdot(-4) & 2\cdot(-3) + (-3)\cdot7 \\ -4\cdot2 + 7\cdot(-4) & -4\cdot(-3) + 7\cdot7 \end{bmatrix}$ $= \begin{bmatrix} 4 + 12 & -6 - 21 \\ -8 - 28 & 12 + 49 \end{bmatrix} = \begin{bmatrix} 16 & -27 \\ -36 & 61 \end{bmatrix}$ Now compute $A^2 - K A + 2I$: $\begin{bmatrix} 16 & -27 \\ -36 & 61 \end{bmatrix} - K \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 0$ $\Rightarrow \begin{bmatrix} 18 & -27 \\ -36 & 63 \end{bmatrix} - K \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} = 0$ Equating entries: $18 - 2K = 0 \Rightarrow K = 9$ |