Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Matrices

Question:

If \( A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} \) and \( 2A^{-1} = KI - A \), where \( K \) is a real number and \( I \) is the identity matrix of order 2, then the value of \( K \) is:

Options:

5

-3

-6

9

Correct Answer:

9

Explanation:

The correct answer is Option (4) → 9

$A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$

Given: $2A^{-1} = K I - A$

Multiply both sides by $A$: $2I = K A - A^2$

$\Rightarrow A^2 - K A + 2I = 0$

Compute $A^2$:

$A^2 = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} = \begin{bmatrix} 2\cdot2 + (-3)\cdot(-4) & 2\cdot(-3) + (-3)\cdot7 \\ -4\cdot2 + 7\cdot(-4) & -4\cdot(-3) + 7\cdot7 \end{bmatrix}$

$= \begin{bmatrix} 4 + 12 & -6 - 21 \\ -8 - 28 & 12 + 49 \end{bmatrix} = \begin{bmatrix} 16 & -27 \\ -36 & 61 \end{bmatrix}$

Now compute $A^2 - K A + 2I$:

$\begin{bmatrix} 16 & -27 \\ -36 & 61 \end{bmatrix} - K \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 0$

$\Rightarrow \begin{bmatrix} 18 & -27 \\ -36 & 63 \end{bmatrix} - K \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} = 0$

Equating entries:

$18 - 2K = 0 \Rightarrow K = 9$