If a line makes angles $α,β,γ$ with the positive directions of the coordinate axes, then the value of $\cos 2α + \cos 2β + \cos 2γ$ is |
1 2 -1 -2 |
-1 |
The correct answer is Option (3) → -1 Let a line make angles $\alpha$, $\beta$, and $\gamma$ with the positive directions of the coordinate axes. Then the direction cosines of the line are: $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$ Using the identity: $\cos(2\theta) = 2\cos^2\theta - 1$ So, $\cos(2\alpha) + \cos(2\beta) + \cos(2\gamma) = 2\cos^2\alpha - 1 + 2\cos^2\beta - 1 + 2\cos^2\gamma - 1$ $= 2(\cos^2\alpha + \cos^2\beta + \cos^2\gamma) - 3$ Using the direction cosine identity: $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$ Therefore, $\cos(2\alpha) + \cos(2\beta) + \cos(2\gamma) = 2(1) - 3 = -1$ |