A magnetic needle has magnetic moment of $5 \times 10^{-2} Am^2$ and Moment of inertia $12 \times 10^{-6} Kgm^2$. It performs 60 oscillations in 1 minute when suspended in a magnetic field. What is the magnitude of the magnetic field? |
$.01 \times 10^{-4} T$ $94.7 \times 10^{-4} T$ .01 G 4.7 G |
$94.7 \times 10^{-4} T$ |
The correct answer is Option (2) → $94.7 \times 10^{-4} T$ Period of one oscillation, $T=2\pi\sqrt{\frac{I}{MB}}$ where, I = Moment of inertia M = Magnetic moment of needle B = Magnetic field strength $T=\frac{60\,seconds}{60\,oscillation}=1s$ Given, $M=5×10^{-2}A.m^2$ $I=12×10^{-6}kg.m^2$ $T = 1\,second$ $1=2\pi\sqrt{\frac{12×10^{-6}}{5×10^{-2}×B}}$ $1=2\pi^2×\frac{12×10^{-6}}{5×10^{-2}×B}$ $B≃94.8×10^{-4}T$ |