The electric field in a copper wire of cross-sectional area $2.0\, mm^2$ carrying a current of 1 A is (Given: Resistivity of copper = $2 × 10^{-8} m$) |
$10^{-2}\, V/m$ $5 × 10^{-2}\, V/m$ $10^{-3}\, V/m$ $2.5 × 10^{-2}\, V/m$ |
$10^{-2}\, V/m$ |
The correct answer is Option (1) → $10^{-2}\, V/m$ Given: Current $I = 1 \, A$ Area $A = 2.0 \, mm^2 = 2.0 \times 10^{-6} \, m^2$ Resistivity of copper $\rho = 2 \times 10^{-8} \, \Omega m$ Current density: $J = \frac{I}{A} = \frac{1}{2.0 \times 10^{-6}} = 5.0 \times 10^{5} \, A/m^2$ Electric field: $E = \rho J = (2 \times 10^{-8})(5.0 \times 10^{5})$ $E = 1.0 \times 10^{-2} \, V/m$ Answer: The electric field in the wire is $1.0 \times 10^{-2} \, V/m$. |