The mean of the number of heads in a simultaneous toss of three coins is: |
1 $\frac{1}{2}$ $\frac{3}{2}$ 2 |
$\frac{3}{2}$ |
The correct answer is Option (3) - $\frac{3}{2}$ $P(H)=\frac{1}{2}$ $P(T)=\frac{1}{2}$ No of tosses = 3 so $P(X=0)={^3C}_0(\frac{1}{2})^0(\frac{1}{2})^3=\frac{1}{8}$ $P(X=1)={^3C}_1(\frac{1}{2})(\frac{1}{2})^2=\frac{3}{8}$ $P(X=2)={^3C}_2(\frac{1}{2})^2(\frac{1}{2})=\frac{3}{8}$ $P(X=3)={^3C}_3(\frac{1}{2})^3(\frac{1}{2})^0=\frac{1}{8}$ so mean = $∑x_ip_i$ $=0×\frac{1}{8}+1×\frac{3}{8}+2×\frac{3}{8}+3×\frac{1}{8}$ $=\frac{3+6+3}{8}=\frac{3}{2}$ |