The window of the house is in the form of a rectangle surmounted by a semi-circular position having a perimeter of 10 m as shown in figure. If x and y represent the length and breadth of rectangular region the whole area of whole window is maximum, then value of x is : |
$\frac{20}{\pi }$ $\frac{20}{4-\pi }$ $\frac{20}{2+\pi }$ $\frac{20}{4+\pi }$ |
$\frac{20}{4+\pi }$ |
The correct answer is Option (4) → $\frac{20}{4+\pi }$ Given $x+2y+\frac{πx}{2}=10⇒2x+4y+πx=20$ so $y=\frac{20-(π+2)x}{4}$ so area = $xy+\frac{πx^2}{4}$ $A(x)=\frac{x(20-(π+2)x)}{4}+\frac{πx^2}{4×2}$ $A'(x)=\frac{(20-(π+2)x)}{4}-\frac{(π+2)x}{4}+\frac{2πx}{4×2}=0$ $⇒\frac{20-(2π+4-π)x}{4}=0$ $⇒x=\frac{20}{4+x}$ |