A particle moves along the curve $8y=x^3+7.$ The points on the curve at which y-coordinate is changing 6 times as fast as the x-coordinate are : |
$(8, 7) \left(-8, -\frac{13}{4}\right)$ $(4, \frac{71}{8}) \left(-4, -\frac{57}{8}\right)$ $(2, 4) \left(-2, -\frac{27}{4}\right)$ $(4, 12) \left(-4, -\frac{33}{4}\right)$ |
$(4, \frac{71}{8}) \left(-4, -\frac{57}{8}\right)$ |
The correct answer is Option (2) → $(4, \frac{71}{8}) \left(-4, -\frac{57}{8}\right)$ $8y=x^3+7$ [Given] $\frac{d(8y)}{dx}=\frac{d(x^3+7)}{dx}$ $8\frac{dy}{dx}=3x^2⇒\frac{dy}{dx}=\frac{3x^2}{8}$ and, $\frac{3x^2}{8}=6$ $x^2=16⇒x±4$ At $x = 4$, $8y=4^3+7$ $y=\frac{71}{8}$ At $x=-4$ $8y=(-4)^3+7$ $y=-\frac{57}{8}$ |