Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Algebra

Question:

If $A=\begin{bmatrix}-k&0\\0&-k\end{bmatrix},k≠0$, then the value of m in $(A^T)^4 = mA$ is:

Options:

$-k$

$k^4$

$-k^3$

$\frac{1}{k}$

Correct Answer:

$-k^3$

Explanation:

The correct answer is Option (3) → $-k^3$

$A^T=\begin{bmatrix}-k&0\\0&-k\end{bmatrix}$

$(A^n)=\begin{bmatrix}(-k)^n&0\\0&(-k)^n\end{bmatrix}$

$(A^T)^4=\begin{bmatrix}(-k)^4&0\\0&(-k)^4\end{bmatrix}$  $(∵A^T=A)$

$=\begin{bmatrix}k^4&0\\0&k^4\end{bmatrix}$

$⇒m\begin{bmatrix}-k&0\\0&-k\end{bmatrix}$

$∴m=-k^3$