Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Differential Equations

Question:

Solution of the differential equation $\frac{dy}{dx}=1+x+y+x y$ are :

Where C is an arbitrary constant

Options:

$\log (1+y)=x-\frac{x^2}{2}+C$

$\log (1-y)=x+\frac{x^2}{2}+C$

$\log (1+y)=x+\frac{x^2}{2}+C$

$\log (1+y)=-x-\frac{x^2}{2}+C$

Correct Answer:

$\log (1+y)=x+\frac{x^2}{2}+C$

Explanation:

The correct answer is Option (3) → $\log (1+y)=x+\frac{x^2}{2}+C$

$\frac{dy}{dx}=(1+x)+y(1+x)$

$⇒\frac{1}{1+y}dy=1+xdx$

$⇒\log|1+y|=x+\frac{x^2}{2}+C$