Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Continuity and Differentiability

Question:

Let f and g be real valued functions defined on interval $(-1,1)$ such that $g''(x)$ is continuous, $g(0)=0, g''(0) \neq 0$, and $f(x)=g(x) \sin x$, $g'(0)=0$.

Statement-1: $\lim\limits_{x \rightarrow 0}\{g(x) \cot x-g(0) ~cosec x \}=f''(0)$

Statement-2: $f'(0)=g(0)$

Options:

Statement-1 is True, Statement-2 is True; statement-2 is a correct explanation for Statement-1.

Statement-1 is True, Statement-2 is True; statement-2 is not a correct explanation for Statement-1.

Statement-1 is True, Statement-2 is False.

Statement-1 is False, Statement-2 is True.

Correct Answer:

Statement-1 is True, Statement-2 is True; statement-2 is not a correct explanation for Statement-1.

Explanation:

$\lim\limits_{x \rightarrow 0}\{g(x) \cot x-g(0) ~cosec x\}$

$=\lim\limits_{x \rightarrow 0} \frac{g(x) \cos x-g(0)}{\sin x}$             ($\frac{0}{0}$ form)

$=\lim\limits_{x \rightarrow 0} \frac{g'(x) \cos x-g(x) \sin x}{\cos x}$           [Using L' Hospital's Rule]

= 0          [∵ g'(0) = 0 and g(0) = 0]

Now, f(x) = g(x) sin x

$\Rightarrow f'(x)=g'(x) \sin x+g(x) \cos x$                ......(i)

$\Rightarrow f''(x)=g''(x) \sin x+2 g'(x) \cos x-g(x) \sin x$

$\Rightarrow f''(0) = 0$

∴  $\lim\limits_{x \rightarrow 0}\{g(x) \cot x-g(0) ~cosec x\}=f''(0)$           [∵  f''(0) = 0]

So, statement - 1 is true.

From (i), we have f'(0) = g(0)

So, statement - 2 is true. But, statement - 2 is not a correct explanation for statement - 1.