Charge Q is placed at a distance r from a uniformly charged rod having 'λ' as linear charge density. The electrostatic force between them (Length of rod = L) is: |
$\frac{kQλ}{(r+\frac{L}{2})}$ $\frac{kQλL}{r(r+L)}$ $\frac{kQλ}{(r+\frac{L}{2})^2}$ $\frac{kQλ}{(r^2+L^2)}$ |
$\frac{kQλL}{r(r+L)}$ |
The correct answer is Option (2) → $\frac{kQλL}{r(r+L)}$ The charge dQ on this small segment is - $dq=λdx=\frac{Q}{L}dx$ $∴dF=k\frac{dq.q}{x^2}=k\frac{Qq}{L}\frac{dx}{x^2}$ $∴\int dF=\int\limits_r^{r+L}k\frac{Qq}{L}\frac{dx}{x^2}$ $=\frac{kQq}{r(r+L)}=\frac{kQλL}{r(r+L)}$ |