The magnitude of torque acting on an electric dipole when placed at right angles to a uniform electric field is $2 \sqrt{2} \times 10^{-2}$ Nm. Magnitude of the torque acting on the dipole when dipole moment makes 45° with electric field will be: |
$\sqrt{2} \times 10^{-2}$ Nm $2 \times 10^{-2}$ Nm $\sqrt{2} \times 10^{-1}$ Nm $4 \times 10^{-2}$ Nm |
$2 \times 10^{-2}$ Nm |
The correct answer is Option (2) → $2 \times 10^{-2}$ Nm The torque on an electric dipole is - $τ=pE\sin θ$ Case 1: $θ=90°$ $τ=pE\sin 90°=2\sqrt{2}×10^{-2}Nm$ $⇒pE-2\sqrt{2}×10^{-2}Nm$ Case 2: $θ=45°$ $τ=pE\sin 45°=pE×\frac{1}{\sqrt{2}}$ $⇒pE×\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}×10^{-2}Nm$ $τ=2×10^{-2}Nm$ |