The value of $\int\frac{x^5}{\sqrt{1+x^3}}dx$ is |
$\frac{2}{9} (1+x^3)^{3/2} -\frac{2}{3} (1+x^3)^{\frac{1}{2}} + c$: $c$ is an arbitrary constant $\frac{2}{3} (1+x^3)^{3/2} -\frac{2}{3} (1+x^3)^{\frac{1}{2}} + c$: $c$ is an arbitrary constant $\frac{1}{3} (1+x^3)^{3/2} +\frac{2}{3} (1+x^3)^{\frac{1}{2}} + c$: $c$ is an arbitrary constant $\frac{2}{9} (1+x^3)^{3/2}+\frac{2}{3} (1+x^3)^{\frac{1}{2}} + c$: $c$ is an arbitrary constant |
$\frac{2}{9} (1+x^3)^{3/2} -\frac{2}{3} (1+x^3)^{\frac{1}{2}} + c$: $c$ is an arbitrary constant |
The correct answer is Option (1) → $\frac{2}{9} (1+x^3)^{3/2} -\frac{2}{3} (1+x^3)^{\frac{1}{2}} + c$: $c$ is an arbitrary constant Given: $\int \frac{x^5}{\sqrt{1 + x^3}} \, dx$ Use substitution: $x^3 = t \Rightarrow 3x^2 dx = dt \Rightarrow x^2 dx = \frac{dt}{3}$ $x^5 = x^3 \cdot x^2 = t \cdot x^2$ So the integral becomes: $\int \frac{t \cdot x^2}{\sqrt{1 + t}} \cdot dx = \int \frac{t}{\sqrt{1 + t}} \cdot \frac{dx}{x^2}$ But $x^2 dx = \frac{dt}{3}$, so $dx = \frac{dt}{3x^2}$ Instead, express all in terms of $t$: From $x^3 = t$, so $x = t^{1/3}$ and $x^2 = t^{2/3}$ Then $x^5 = t \cdot t^{2/3} = t^{5/3}$, and $dx = \frac{1}{3}t^{-2/3} dt$ So, $\int \frac{x^5}{\sqrt{1 + x^3}} dx = \int \frac{t^{5/3}}{\sqrt{1 + t}} \cdot \frac{1}{3}t^{-2/3} dt$ $= \frac{1}{3} \int \frac{t^{1}}{\sqrt{1 + t}} dt$ $= \frac{1}{3} \int \frac{t}{\sqrt{1 + t}} dt$ Now use substitution: $u = 1 + t \Rightarrow du = dt$ $t = u - 1$ So the integral becomes: $\frac{1}{3} \int \frac{u - 1}{\sqrt{u}} du = \frac{1}{3} \int (u^{1/2} - u^{-1/2}) du$ $= \frac{1}{3} \left( \frac{2}{3} u^{3/2} - 2 u^{1/2} \right) + C$ $= \frac{1}{3} \left( \frac{2}{3}(1 + x^3)^{3/2} - 2(1 + x^3)^{1/2} \right) + C$ |