If Laspeyre's index number is 169 and Paasche's index number is 81, then Fisher's ideal index number is : |
130 123 146 117 |
117 |
The correct answer is Option (4) → 117 $\text{Fisher's ideal Index} = \left(\sqrt{(\text{Laspeyre's Index})×(\text{Paasche's Index})}\right)$ $=\sqrt{169×81}$ $=\sqrt{13689}$ $=117$ |