Value of $\int\limits_2^3\frac{\sqrt{x}}{\sqrt{x}+\sqrt{5-x}}dx$ is |
0 $\frac{1}{2}$ 1 5 |
$\frac{1}{2}$ |
The correct answer is Option (2) → $\frac{1}{2}$ $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5 - x}}\,dx$ Let $I = \int_{2}^{3} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5 - x}}\,dx$ Use the identity: $\int_{a}^{b} f(x)\,dx = \int_{a}^{b} f(a + b - x)\,dx$ $I = \int_{2}^{3} \frac{\sqrt{5 - x}}{\sqrt{5 - x} + \sqrt{x}}\,dx$ Add both expressions: $2I = \int_{2}^{3} \left( \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5 - x}} + \frac{\sqrt{5 - x}}{\sqrt{5 - x} + \sqrt{x}} \right) dx$ $2I = \int_{2}^{3} 1\,dx = 3 - 2 = 1$ $I = \frac{1}{2}$ |