$\int\limits_1^{\sqrt{3}}\frac{1}{1+x^2}dx$ is equal to: |
$\frac{\pi}{3}$ $\frac{2\pi}{3}$ $\frac{\pi}{6}$ $\frac{\pi}{12}$ |
$\frac{\pi}{12}$ |
The correct answer is Option (4) → $\frac{\pi}{12}$ Given integral: $\int_{{1}^\sqrt{3}} \frac{1}{1+x^2} dx$ Standard formula: $\int \frac{1}{1+x^2} dx = \tan^{-1}x + C$ Evaluate definite integral: $\int_{{1}^\sqrt{3}} \frac{1}{1+x^2} dx = \tan^{-1}(\sqrt{3}) - \tan^{-1}(1)$ $= -\frac{\pi}{4} + \frac{\pi}{3} = \frac{\pi}{12}$ |