Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Question:

$\int\limits_1^{\sqrt{3}}\frac{1}{1+x^2}dx$ is equal to:

Options:

$\frac{\pi}{3}$

$\frac{2\pi}{3}$

$\frac{\pi}{6}$

$\frac{\pi}{12}$

Correct Answer:

$\frac{\pi}{12}$

Explanation:

The correct answer is Option (4) → $\frac{\pi}{12}$

Given integral:

$\int_{{1}^\sqrt{3}} \frac{1}{1+x^2} dx$

Standard formula: $\int \frac{1}{1+x^2} dx = \tan^{-1}x + C$

Evaluate definite integral:

$\int_{{1}^\sqrt{3}} \frac{1}{1+x^2} dx = \tan^{-1}(\sqrt{3}) - \tan^{-1}(1)$

$= -\frac{\pi}{4} + \frac{\pi}{3} = \frac{\pi}{12}$