Find the peroid of the function $f(x)=4\cos^4(\frac{x-π}{4π^2})-2\cos(\frac{x-π}{2π^2})$. |
$π^3$ $2π^2$ $2π^3$ $π^2$ |
$2π^3$ |
$f(x)=4\cos^4(\frac{x-π}{4π^2})-2\cos(\frac{x-π}{2π^2})$ $=(2\cos^2(\frac{x-π}{4π^2}))^2-2\cos^2(\frac{x-π}{2π^2})$ $=(1+\cos(\frac{x-π}{2π^2}))^2-2\cos(\frac{x-π}{2π^2})$ $(using\,2\cos^2θ+\cos 2θ)$ $=\cos^2(\frac{x-π}{2π^2})+1$ $=\frac{1+\cos(\frac{x-π}{π^2})}{2}+1$ $=\frac{\cos(\frac{x}{π^2}-\frac{1}{π})}{2}+3$ for $\cos^2(\frac{x-π}{2π^2})+1$ we know for $\cos^2(x-π)+1$ period is $"π"$ so for $\cos^2(\frac{x-π}{2π^2})+1$ Period is $\frac{π}{\frac{1}{2}π^2}=2π^3$ |