Three solid spheres each of mass m and radius R are released from the position shown in figure. The speed of any one sphere at the time of collision would be |
$\sqrt{Gm\left(\frac{1}{d}-\frac{3}{R}\right)}$ $\sqrt{Gm\left(\frac{3}{d}-\frac{1}{R}\right)}$ $\sqrt{Gm\left(\frac{2}{R}-\frac{1}{d}\right)}$ $\sqrt{Gm\left(\frac{1}{R}-\frac{2}{d}\right)}$ |
$\sqrt{Gm\left(\frac{1}{R}-\frac{2}{d}\right)}$ |
From conservation of mechanical energy $3\left\{\frac{1}{2} m v^2\right\} = 3\left\{\frac{G m^2}{2 R}-\frac{G m^2}{d}\right\}$ $v^2=G m\left\{\frac{1}{R}-\frac{2}{d}\right\}$ ∴ $v=\sqrt{G m\left\{\frac{1}{R}-\frac{2}{d}\right\}}$ Hence, (D) is correct. |