The demand for a certain product is represented by the function $p=20+2x-\frac{x^2}{30}$ where c is the number of units demanded and p is the price per unit , then the value of marginal revenue when 10 units are sold is : |
100 150 50 250 |
50 |
The correct answer is Option (3) → 50 The Demand function is, $p=20+2x-\frac{x^2}{30}$ $R(x)=x.p=x\left(20+2x-\frac{x^2}{30}\right)$ $=20x+2x^2-\frac{x^3}{30}$ $MR(x)=\frac{d}{dx}\left(20+2x^2-\frac{x^3}{30}\right)$ $=20+4x-\frac{3x^2}{30}$ $⇒MR(10)=20+4(10)-\frac{3×(10)^2}{30}=50$ |