Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Linear Programming

Question:

Consider the following LPP:
Maximise $Z=9x+3y$
Subject to the constraints: $x + 3y ≤ 60, x-y ≤ 0, x ≥0, y ≥0$
If $x=A, y=B$ is the optimum solution of the given LPP, then the value of $A + B$ is:

Options:

15

30

48

61

Correct Answer:

30

Explanation:

The correct answer is Option (2) → 30

$Z_{max}=Z(15,15)=9×15+3×15$

$=180$

$A+B=15+15=30$