If \(\frac{a}{b}\) + \(\frac{b}{a}\) = 2 Find a - b |
0 2 4 -7 |
0 |
Formula → x + \(\frac{1}{x}\) = 2, then x = 1 always Put \(\frac{a}{b}\) = 1 \(\frac{b}{a}\) = 1 then a - b = 0
Method 2 → \(\frac{a}{b}\) + \(\frac{b}{a}\) = 2 \(\frac{a^2 + b^2}{ab}\) = 2 a2 + b2 = 2ab a2 + b2 - 2ab = 0 (a - b)2 So, a = b → Put in question. \(\frac{a}{a}\) + \(\frac{a}{a}\) = 2 (satisfied) |