Match List – I with List – II.
Choose the correct answer from the options given below: |
A-III, B-IV, C-I, D-II A-IV, B-I, C-II, D-III A-III, B-II, C-IV, D-I A-II, B-III, C-IV, D-I |
A-III, B-IV, C-I, D-II |
The correct answer is Option (1) → A-III, B-IV, C-I, D-II $\int \sin x \cos x d x=\frac{1}{2}\int 2\sin x\cos x\,dx$ $=\frac{1}{2}\sin 2xdx=-\frac{1}{4}\cos 2x+c$ (III) (B) $\int\frac{dx}{\sin^2x\cos^2x}=\int\frac{\sin^2x+\cos^2x}{\sin^2x\cos^2x}dx$ $=\int\frac{1}{\cos^2x}dx+\int\frac{1}{\sin^2x}dx$ $[\sin^2+\cos^2x=1]$ $=\tan x-\cot x+c$ (IV) (C) $\int \frac{\sin 2x}{1+\sin ^2 x} d x=\int\frac{2\sin x\cos x}{1+\sin x}dx$ let $t=\sin x⇒dt=\cos x\,dx$ $I=\int\frac{2t}{1+t^2}dt$ $=\log|1+t^2|+C$ $=\log|1+\sin^2x|+C$ (I) (D) $\int(1-\cos x) cosec^2 x d x=\int cosec^2 x\, d x-\int \cos x\,cosec^2x\,dx$ $=\int(1-\cos x)\frac{1}{\sin^2x}dx$ $=\int\frac{1}{\sin^2x}dx-\int\frac{\cos x}{\sin^2x}dx$ $=\tan x-\cot x+C$ (II) |