Distance between the point (3, 4, 5) and the point where the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ meets the plane $x+y +z=17$ is : |
1 2 3 $\frac{3}{2}$ |
3 |
The correct answer is option (3) → 3 let $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}=λ$ $⇒x=λ+3,y=2λ+4,z=2λ+5$ placing in eq. of plane $λ+3+2λ+4+2λ+5=17$ $5λ=5⇒λ=1$ $x=4,y=6,z=7$ → points of intersection given point (3, 4, 5) distance = $\sqrt{(4-3)^2+(6-4)^2+(7-5)^2}$ $=\sqrt{1^2+2^2+2^2}$ $=3$ |