If $\left|\begin{array}{ccc}y+z & x & x \\ y & z+x & y \\ z & z & x+y\end{array}\right|=k(x y z)$, then k is equal to |
4 -4 Zero None of these |
4 |
The correct answer is Option (1) → 4 $\left|\begin{array}{ccc}y+z & x & x \\ y & z+x & y \\ z & z & x+y\end{array}\right|=k(x y z)$ Putting, $x=y=z=1$ $\left|\begin{array}{ccc}2& 1 &1 \\ 1 &2 &1 \\ 1 & 1 & 2\end{array}\right|=k$ $⇒2(4-1)-1(2-1)+1(1-2)=k$ $⇒6-2=k$ $⇒k=4$ |