In the hydrogen atom, an electron revolves around the nucleus in a circular orbit of radius $5.11 × 10^{-11} m$ with a frequency of $6.8 × 10^{15} Hz$. The magnetic field at the centre of the orbit is: |
6.7 T 13.4 T 20.1 T 26.8 T |
13.4 T |
The correct answer is Option (2) → 13.4 T Given: Radius of orbit: $r = 5.11 \times 10^{-11} \ \text{m}$ Frequency: $f = 6.8 \times 10^{15} \ \text{Hz}$ Charge of electron: $e = 1.6 \times 10^{-19} \ \text{C}$ Permeability: $\mu_0 = 4 \pi \times 10^{-7} \ \text{Tm/A}$ Current due to orbital motion: $I = e f = (1.6 \times 10^{-19})(6.8 \times 10^{15})$ $I = 1.088 \times 10^{-3} \ \text{A}$ Magnetic field at the centre of a current loop: $B = \frac{\mu_0 I}{2r}$ Substitute values: $B = \frac{(4 \pi \times 10^{-7})(1.088 \times 10^{-3})}{2(5.11 \times 10^{-11})}$ $B = \frac{1.365 \times 10^{-9}}{1.022 \times 10^{-10}}$ $B \approx 13.4 \ \text{T}$ Final Answer: $B \approx 13.4 \ \text{T}$ |