The minimum value of $ax + by$, where $xy = c^2 $ and a, b, c are positive, is : |
$2b\sqrt{ac}$ $2a\sqrt{ab}$ $2c\sqrt{ab}$ $2\sqrt{abc}$ |
$2c\sqrt{ab}$ |
The correct answer is Option (3) → $2c\sqrt{ab}$ The constraint, $xy=c^2$, which can be written as: $y=\frac{c^2}{x}$ Substitute $y=\frac{c^2}{x}$ into the objective function $ax+by=ax+b.\frac{c^2}{x}$ $f(x)=ax+\frac{bc^2}{x}$ $⇒\frac{d}{dx}\left(ax+\frac{bc^2}{x}\right)=a-\frac{bc^2}{x^2}$ $⇒a-\frac{bc^2}{x^2}=0$ $⇒\frac{bc^2}{x^2}=a$ $⇒x=\frac{c\sqrt{b}}{\sqrt{a}}$ and, $y=\frac{c^2}{x}=\frac{c\sqrt{a}}{\sqrt{b}}$ ∴ Substitute the values, $ax+by=c\sqrt{ab}+c\sqrt{ab}$ $=2c\sqrt{ab}$ |