CUET Preparation Today
CUET
-- Mathematics - Section A
Definite Integration
If k∈N and Ik=2kπ∫−2kπ|sinx|[sinx]dx, where [.] denotes the greatest integer function, then 100∑k=1Ik equal to |
-10100 -40400 -20200 none of these |
-20200 |
We have, Ik=2kπ∫−2kπ|sinx|[sinx]dx ⇒Ik=2kπ∫0{|sinx|[sinx]+|sin(−x)|+[sin−(x)]}dx \left[∵ \int\limits_{-a}^a f(x) d x=\int\limits_0^a\{f(x)+f(-x)\} d x\right] \Rightarrow I_k=\int\limits_0^{2 k \pi}|\sin x|\{[\sin x]+[\sin (-x)]\} d x \Rightarrow I_k=-\int\limits_0^{2 k \pi}|\sin x| d x [∵ [-x]=-[x]-1, \text { if } x \notin Z] \Rightarrow I_k=-2 k \int\limits_0^\pi|\sin x| d x \left[\begin{array}{l}∵ \int\limits_0^{n T} f(x) d x=n \int\limits_0^n f(x) d x \text { if } \\ f(x) \text { is periodic with period } T\end{array}\right] \Rightarrow I_k=-2 k \int\limits_0^\pi \sin x d x=-2 k \times 2=-4 k ∴ \sum\limits_{k=1}^{100} I_k=-4 k=-4 \times 5050=-20200 |