If $I_1=\int\limits_0^{\pi / 2} \cos (\sin x) d x, I_2=\int\limits_0^{\pi / 2} \sin (\cos x) d x$ and $I_3=\int_0^{\pi / 2} \cos x d x$, then |
$I_1>I_3>I_2$ $I_3>I_1>I_2$ $I_1>I_2>I_3$ $I_3>I_2>I_1$ |
$I_1>I_3>I_2$ |
We know that $\sin x<x$ for $x>0$ ∴ $\sin (\cos x)<\cos x$ for $0<x<\pi / 2$ $\Rightarrow \int\limits_0^{\pi / 2} \sin (\cos x) d x<\int\limits_0^{\pi / 2} \cos x d x \Rightarrow I_2<I_3$ Again, $x>\sin x$ for $x \in(0, \pi / 2)$ $\Rightarrow \cos x<\cos (\sin x)$ [∵ Cosine is a decreasing function on [0, π/2] $\Rightarrow \int\limits_0^{\pi / 2} \cos x d x<\int\limits_0^{\pi / 2} \cos (\sin x) d x \Rightarrow I_3<I_1$ Thus, we have $I_2<I_3<I_1$ i.e. $I_1>I_3>I_2$ |