For the function, $f(x) =\frac{-3}{4}x^4-8x^3-\frac{45}{2}x^2-350$, which of the following statements are correct? (A) $x=-3$ and $x = -5$ are the only critical points of the given function. Choose the correct answer from the options given below: |
(A), (B) and (D) only (B) and (D) only (C) and (D) only (A), (B) and (C) only |
(B) and (D) only |
The correct answer is Option (2) → (B) and (D) only Given: $f(x) = -\frac{3}{4}x^4 - 8x^3 - \frac{45}{2}x^2 - 350$ $f'(x) = -3x^3 - 24x^2 - 45x = -3x(x+3)(x+5)$ Critical points: $x = 0,-3,-5$ ⇒ (A) is false. $f''(x) = -9x^2 - 48x - 45$ At $x=-3$: $f''(-3) = 18 > 0$ ⇒ local minimum at $x=-3$ ⇒ (B) true. $f(-3) = -\frac{3}{4}\cdot 81 + 216 - \frac{45}{2}\cdot 9 - 350 = -397.25 \ne 231$ ⇒ (C) false. At $x=-5$: $f''(-5) = -30 < 0$ ⇒ local maximum at $x=-5$ ⇒ (D) true. |