If $y = e^{nx} ,$ then $n^{th}$ derivative of y is : |
$e^{nx}$ $n^2e^{nx}$ $ny$ $n^ny$ |
$n^ny$ |
The correct answer is Option (4) → $n^ny$ $y=e^{nx}$ $⇒\frac{dy}{dx}=ne^{nx}$ $⇒\frac{d^2y}{dx^2}=n^2e^{nx}=n^{derivative}y$ $[y=e^{nx}]$ $⇒\frac{d^ny}{dx^n}=n^ne^{nx}=n^ny$ |