The interval, in which the function $f(x)=\frac{3}{x}+\frac{x}{3}$ is strictly decreasing, is: |
$(-0,-3)∪(3,∞)$ $(-3,3)$ $(-3,0)∪(0,3)$ $R-\{0\}$ |
$(-3,0)∪(0,3)$ |
The correct answer is Option (3) → $(-3,0)∪(0,3)$ $f(x)=\frac{3}{x}+\frac{x}{3}$ for $f(x)$ to be strictly decreasing, $f'(x)<0$ $⇒\frac{-3}{x^2}+\frac{1}{3}<0$ $⇒\frac{-9+x^2}{3x^2}<0$ $⇒-9+x^2<0$ $⇒x<+3$ x>-3 as $x≠0$ as $\frac{3}{x}$ is not defined. |