The distance between the planes $2x+3y +4z=4$ and $4x+6y+8z=12$ is : |
2 units 4 units 8 units $\frac{2}{\sqrt{29}} $units |
$\frac{2}{\sqrt{29}} $units |
Planes: $2x+3y+4z=4$ and $4x+6y+8z=12$ Divide second equation by $2$: $2x+3y+4z=6$ So, parallel planes: $2x+3y+4z=4$ and $2x+3y+4z=6$ Distance between parallel planes $ax+by+cz=d_1$ and $ax+by+cz=d_2$ is $D=\frac{|d_1-d_2|}{\sqrt{a^2+b^2+c^2}}$ $=\frac{|4-6|}{\sqrt{2^2+3^2+4^2}}=\frac{2}{\sqrt{29}}$ Required distance = $\frac{2}{\sqrt{29}}$ |